Kinks of the sine-Hilbert equation and their dynamical motions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 203587
(http://iopscience.iop.org/0305-4470/20/12/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 15:11

Please note that terms and conditions apply.

# Kinks of the sine-Hilbert equation and their dynamical motions 

Yoshimasa Matsuno<br>Department of Physics, Faculty of Liberal Arts, Yamaguchi University, Yamaguchi 753, Japan

Received 12 September 1986


#### Abstract

An exact method for constructing exact solutions of the sine-Hilbert ( SH ) equation is developed. It is shown that the SH equation can be transformed into a system of non-linear ordinary differential equations through a dependent variable transformation. Furthermore, this system of equations is transformed into a system of decoupled linear ordinary differential equations. Exact solutions of the sh equation are then constructed by means of a simple integration. The dynamical properties of the solutions are also studied in detail. The solution is interpreted as a superposition of $N$ pulses which may be termed kinks, where $N$ is a positive integer. Asymptotically for large time, it is composed of a pulse with a constant velocity and $N-1$ 'static pulses'. This is a novel characteristic of the solution, unlike the well known $N$-soliton solution which behaves like $N$ moving pulses for large time.


## 1. Introduction

In recent studies of soliton theory, much attention has been paid to non-linear integrodifferential equations. Among these equations, the Benjamin-Ono (bо) equation (Benjamin 1967, Ono 1975) and the intermediate long wave (ILw) equation (Joseph 1977, Joseph and Egri 1978, Kubota et al 1978) are typical examples. The various exact methods have been developed in order to solve these equations. The inverse scattering method (Gardner et al 1967, Ablowitz and Segur 1981, Calogero and Degasperis 1982, Dodd et al 1983) and the bilinear transformation method (Hirota 1971, Bullough and Caudrey 1980, Matsuno 1984) are powerful tools for analysing certain classes of non-linear evolution equations. Both methods have been applied successfully to the bo (Matsuno 1979a, 1980, Satsuma and Ishimori 1979, Fokas and Ablowitz 1983) and the ilw (Matsuno 1979b, Kodama et al 1982) equations and the $N$-soliton and the $N$-periodic wave solutions for these novel integro-differential equations are now available.

Recently, a class of non-linear integro-differential equations has been found in association with a matrix spectral problem (Degasperis and Santini 1983). The so-called sine-Hilbert ( $\mathbf{s h}$ ) equation belongs to this class of equations. In the original version of the SH equation due to Degasperis and Santini (1983), it is expressed as the following system of non-linear integro-differential equations

$$
\begin{align*}
u_{t} & =v H v  \tag{1.1a}\\
v_{t} & =u H v . \tag{1.1b}
\end{align*}
$$

Here, $u=u(x, t)$ and $v=v(x, t)$ are scalar functions of two variables, $x$ and $t$, the integral operator $H$ defined by

$$
\begin{equation*}
H v(x, t)=\frac{1}{\pi} P \int_{-x}^{\infty} \frac{v(y, t)}{y-x} \mathrm{~d} y \tag{1.2}
\end{equation*}
$$

is the Hilbert transform (the symbol $P$ in (1.2) stands for the Cauchy principal value) and the subscript $t$ appended to $u$ and $v$ denotes partial differentiation with respect to $t$.

Subsequently, Degasperis et al (1985) and Santini et al (1985) have demonstrated that the system of equations (1.1) can be associated with a Riemann-Hilbert spectral problem. These authors introduced a new dependent variable, $\theta=\theta(x, t)$, through the relations $v=\mathrm{i} \sin \theta$ and $u=\left(1+v^{2}\right)^{1 / 2}=\cos \theta$ and took account of a property of the $H$ operator, $H^{2}=-1$ to recast (1.1) into the following single equation which they named the sh equation:

$$
\begin{equation*}
H \theta_{t}=-\sin \theta . \tag{1.3}
\end{equation*}
$$

The sh equation is derived formally from the sine-Gordon equation, $\theta_{x 1}=-\sin \theta$ if we replace the $x$ derivative by the Hilbert transform. This formal derivation is entirely analogous to that of the bo equation from the Korteweg-de Vries equation.

The construction of pure soliton solutions has been performed by means of a Riemann-Hilbert scattering method (Santini et al 1985). However, these authors did not present the explicit expression of an $N$-soliton solution for $N \geqslant 2$.

The purpose of the present paper is to develop a systematic method for constructing exact non-periodic solutions of (1.3) which are real and finite over all $x$ and $t$ and to analyse the properties of the solutions in detail. The method of construction developed in this paper stems quite naturally from the bilinear transformation method introduced by Hirota (1971). This paper also serves to amplify the results of a previous note (Matsuno 1986). Finally, it should be remarked that the periodic solutions of (1.3) which reduce, in an appropriate limit, to the non-periodic solutions presented here were constructed quite recently (Matsuno 1987).

In § 2, we show that the sh equation can be transformed into a system of non-linear ordinary differential equations through a dependent variable transformation. At the same time, it is shown that this system of equations is equivalent to a bilinear equation. The system of equations is furthermore converted into a system of decoupled linear ordinary differential equations. Exact solutions of (1.3) are then constructed by a simple integration. In $\S 3$, the properties of the solutions are studied in detail. The solution presented is interpreted as a superposition of $N$ pulses, where $N$ is positive integer. However, as a result of interactions between pulses, the solution is shown to be composed of a pulse moving in the positive $x$ direction with a constant velocity and $N-1$ 'static pulses' with very narrow widths in the limit of large time. This is a remarkable property of solutions which is quite unlike the asymptotic behaviour of the usual $N$-soliton solution. Section 4 is devoted to concluding remarks.

## 2. Method for exact solution

In this section, we shall develop a systematic method for constructing exact solutions of (1.3) which are real and finite over all $x$ and $t$ and satisfy the boundary conditions $\theta_{x} \rightarrow 0$ as $x \rightarrow \pm \infty$.

First of all, let us introduce the following dependent variable transformation

$$
\begin{align*}
& \theta=\mathrm{i} \ln \left(f^{*} / f\right)  \tag{2.1}\\
& f=f(x, t)=\prod_{j=1}^{N}\left(x-x_{j}(t)\right)  \tag{2.2a}\\
& \operatorname{Im} x_{j}(t)>0 \quad j=1,2, \ldots, N \quad x_{n} \neq x_{m} \text { for } n \neq m \tag{2.2b}
\end{align*}
$$

where $x_{j}(j=1,2, \ldots, N)$ are complex functions of $t$ and * denotes complex conjugate $\dagger$. Then, it readily follows from (1.2), (2.1) and (2.2) that

$$
\begin{align*}
H \theta_{t} & =\mathrm{i} \sum_{j=1}^{N}\left[\dot{x}_{j} H\left(\frac{1}{x-x_{j}}\right)-\dot{x}_{j}^{*} H\left(\frac{1}{x-x_{j}^{*}}\right)\right] \\
& =\sum_{j=1}^{N}\left(\frac{\dot{x}_{j}}{x-x_{j}}+\frac{\dot{x}_{j}^{*}}{x-x_{j}^{*}}\right) \\
& =-\left(\ln \left(f^{*} f\right)\right)_{t} \tag{2.3}
\end{align*}
$$

where we have used the formula

$$
\begin{equation*}
H\left(\frac{1}{x-x_{j}}\right)=\frac{-i}{x-x_{j}} \quad \operatorname{Im} x_{j}>0 \tag{2.4}
\end{equation*}
$$

In (2.3), the dot appended to $x_{j}$ and $x_{j}^{*}$ means differentiation with respect to $t$. Substituting (2.1), (2.2) and (2.3) into (1.3), equation (1.3) is transformed into the form

$$
\begin{equation*}
\sum_{j=1}^{N}\left(\frac{\dot{x}_{j}}{x-x_{j}}+\frac{\dot{x}_{j}^{*}}{x-x_{j}^{*}}\right)=\frac{1}{2 \mathrm{i}}\left(\frac{\prod_{j=1}^{N}\left(x-x_{j}^{*}\right)}{\prod_{j=1}^{N}\left(x-x_{j}\right)}-\frac{\Pi_{j=1}^{N}\left(x-x_{j}\right)}{\prod_{j=1}^{N}\left(x-x_{j}^{*}\right)}\right) . \tag{2.5}
\end{equation*}
$$

It should be noted that (2.5) is equivalent to the following bilinear equation:

$$
\begin{equation*}
\left(f^{*} f\right)_{L}=\frac{1}{2 \mathbf{i}}\left(f^{2}-f^{* 2}\right)=\operatorname{Im} f^{2} \tag{2.6}
\end{equation*}
$$

Multiplying both sides of (2.5) by $x-x_{n}(n=1,2, \ldots, N)$ and then putting $x=x_{n}$, we obtain a system of non-linear ordinary differential equations for $x_{n}$ as follows:

$$
\begin{equation*}
\dot{x}_{n}=\frac{1}{2 \mathrm{i}} \frac{\prod_{j=1}^{N}\left(x_{n}-x_{j}^{*}\right)}{\prod_{j=1(j \neq n)}^{N}\left(x_{n}-x_{j}\right)} \quad n=1,2, \ldots, N \tag{2.7}
\end{equation*}
$$

Therefore, in the present situation the problem considered here has been reduced to solve dynamical motions of $N$ variables, $x_{1}, x_{2}, \ldots, x_{N}$.

We shall now show that the system of equations (2.7) can be linearised by an appropriate procedure and motions of $x_{1}, x_{2}, \ldots, x_{N}$ are determined by solving an algebraic equation of order $N$. It will be demonstrated, however, that the solutions of (1.3) can be constructed without solving the algebraic equation explicitly.

[^0]In the process of linearisation, it is a key point to introduce the following polynomials $s_{n}$ and $p_{n}(n=1,2, \ldots, N)$ :

$$
\begin{align*}
& s_{1}=\sum_{j=1}^{N} x_{j}  \tag{2.8a}\\
& s_{2}=\sum_{j<k}^{N} x_{j} x_{k},  \tag{2.8b}\\
& \vdots  \tag{2.8c}\\
& s_{N}=\prod_{j=1}^{N} x_{j}  \tag{2.9}\\
& p_{n}=\sum_{j=1}^{N} x_{j}^{n} \quad n=1,2, \ldots, N
\end{align*}
$$

where $s_{n}(n=1,2, \ldots, N)$ are elementary symmetric functions of $x_{1}, x_{2}, \ldots, x_{N}$. As is well known, the $p_{n}$ and $s_{n}$ are related by Euler's formula

$$
\begin{align*}
& p_{n}=\sum_{j=1}^{n-1}(-1)^{n-1-j} s_{n-j} p_{j}+(-1)^{n-1} n s_{n} \quad n=2,3, \ldots, N  \tag{2.10a}\\
& p_{1}=s_{1} . \tag{2.10b}
\end{align*}
$$

A few of $p_{n}$ are given by

$$
\begin{align*}
& p_{2}=-2 s_{2}+s_{1}^{2}  \tag{2.11a}\\
& p_{3}=3 s_{3}-3 s_{1} s_{2}+s_{1}^{3}  \tag{2.11b}\\
& p_{4}=-4 s_{4}+4 s_{1} s_{3}-4 s_{1}^{2} s_{2}+2 s_{2}^{2}+s_{1}^{4} . \tag{2.11c}
\end{align*}
$$

As the first step for constructing solutions of (1.3), we shall derive the time evolution of $p_{n}$. Before entering into detail, it is useful to note the following formulae:

$$
\begin{align*}
& \sum_{n=1}^{N} \frac{x_{n}^{k}}{\prod_{j=1(j \neq n)}^{N}\left(x_{n}-x_{j}\right)}=\delta_{k, N-1} \quad k=0,1, \ldots, N-1  \tag{2.12}\\
& \frac{x^{N+m}}{\prod_{j=1}^{N}\left(x-x_{j}\right)}=\sum_{j=0}^{m} c_{m-j} x^{j}+\frac{\sum_{j=0}^{N-1} d_{j}^{(m)} x^{j}}{\prod_{j=1}^{N}\left(x-x_{j}\right)} \tag{2.13}
\end{align*}
$$

where $\delta_{k, N-1}$ is Kronecker's delta function and $c_{m-j}$ and $d_{j}^{(m)}$ in (2.13) are determined successively by the following recursion relations:

$$
\begin{align*}
& \sum_{j=0}^{n}(-1)^{n-j} c_{j} s_{n-j}=0 \quad n=1,2, \ldots, m  \tag{2.14a}\\
& \sum_{j=0}^{m}(-1)^{n-j} c_{j} s_{n-j}+d_{N+m-n}^{(m)}=0 \quad n=m+1, m+2, \ldots, m+N  \tag{2.14b}\\
& c_{0}=s_{0}=1 . \tag{2.14c}
\end{align*}
$$

Explicitly, the first few of $c_{j}$ are written as

$$
\begin{align*}
& c_{1}=s_{1}  \tag{2.15a}\\
& c_{2}=-s_{2}+s_{1}^{2}  \tag{2.15b}\\
& c_{3}=s_{3}-2 s_{1} s_{2}+s_{1}^{3}  \tag{2.15c}\\
& c_{4}=-s_{4}+2 s_{1} s_{3}-3 s_{1}^{2} s_{2}+s_{2}^{2}+s_{1}^{4} . \tag{2.15d}
\end{align*}
$$

The relation (2.12) is a consequence of Lagrange's interpolation formula. It can be proved easily by considering the contour integral

$$
\frac{1}{2 \pi \mathrm{i}} \oint \frac{z^{k}}{\prod_{j=1}^{N}\left(z-x_{j}\right)} \mathrm{d} z
$$

where the integration is performed along a closed contour containing all the $x_{j}$.
It immediately follows from (2.12), (2.13) and (2.14b) that
$\sum_{n=1}^{N} \frac{x_{n}^{N+m}}{\prod_{j=1(j \neq n)}^{N}\left(x_{n}-x_{j}\right)}=d_{N-1}^{(m)}=\sum_{j=0}^{m}(-1)^{m-j} c_{j} s_{m+1-j} \quad m=0,1, \ldots, N-1$.
Under these preparations, it is straightforward to derive the equation which governs the time evolution of $p_{n+1}$. We first use (2.7) and (2.12) to obtain

$$
\begin{align*}
\frac{1}{m+1} \dot{p}_{m+1} & =\sum_{n=1}^{N} x_{n}^{m} \dot{x}_{n} \\
& =\frac{1}{2} \sum_{k=0}^{m+1}(-1)^{k} s_{k}^{*} \sum_{n=1}^{N} \frac{x_{n}^{N+m-k}}{\prod_{j=1(j \neq n)}^{N}\left(x_{n}-x_{j}\right)} . \tag{2.17}
\end{align*}
$$

Owing to (2.12) and (2.16), (2.17) becomes

$$
\begin{align*}
\frac{1}{m+1} \dot{p}_{m+1}= & \frac{1}{2 i}\left((-1)^{m+1} s_{m+1}^{*}+\sum_{k=0}^{m} s_{m-k}^{*} \sum_{j=0}^{k}(-1)^{m-j} c_{j} s_{k+1-j}\right) \\
= & \frac{1}{2 i}\left((-1)^{m+1} s_{m+1}^{*}+\sum_{j=0}^{m}(-1)^{m-j} c_{j} s_{m+1-j}\right. \\
& \left.+\sum_{k=0}^{m-1} s_{m-k}^{*} \sum_{j=0}^{k}(-1)^{m-j} c_{j} s_{k+1-j}\right) . \tag{2.18}
\end{align*}
$$

On the other hand, we notice the following relation which stems from (2.14a) with $n=k+1(k=0,1, \ldots, m-1)$

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{j} c_{j} s_{k+1-j}=(-1)^{k} c_{k+1} \tag{2.19}
\end{equation*}
$$

Substituting (2.19) into the third term on the right-hand side of (2.18), one arrives at the final result
$\dot{p}_{m+1}=\frac{(-1)^{m}(m+1)}{2 \mathrm{i}} \sum_{k=0}^{m}(-1)^{k}\left(s_{m+1-k}-s_{m+1-k}^{*}\right) c_{k} \quad m=0,1, \ldots, N-1$.
The second step, which is most important in this paper, is to derive the time evolution of $s_{j}(j=1,2, \ldots, N)$. It is expressed simply as

$$
\begin{equation*}
\dot{s}_{j}=\frac{1}{2 \mathrm{i}}\left(s_{j}-s_{j}^{*}\right)=\operatorname{Im} s_{j} \quad j=1,2, \ldots, N \tag{2.21}
\end{equation*}
$$

In contrast to (2.7), (2.21) is a system of decoupled linear ordinary differential equations and the integration of which can be readily performed. We shall now prove (2.21) by a mathematical induction. Equation (2.21) with $j=1$ holds obviously because of (2.20) with $m=0$ and $p_{1}=s_{1}$ (see (2.10b)). Assume (2.21) for $j=1,2, \ldots, m$, i.e.

$$
\begin{equation*}
\dot{s}_{j}=\frac{1}{2 \mathrm{i}}\left(s_{j}-s_{j}^{*}\right) \quad j=1,2, \ldots, m . \tag{2.22}
\end{equation*}
$$

Then, it follows from (2.10a), (2.20) and (2.22) that

$$
\begin{align*}
& \dot{s}_{m+1}=\frac{(-1)^{m}}{m+1} \dot{p}_{m+1}+\frac{1}{m+1} \sum_{j=0}^{m-1}(-1)^{j}\left(\dot{s}_{m-j} p_{j+1}+s_{m-j} \dot{p}_{j+1}\right) \\
& =\frac{1}{2 \mathrm{i}}\left(s_{m+1}-s_{m+1}^{*}\right)-\frac{1}{2 \mathrm{i}} \sum_{k=0}^{m-1}(-1)^{k}\left(s_{m-k}-s_{m-k}^{*}\right)\left(c_{k+1}-\frac{1}{m+1} p_{k+1}\right) \\
& \quad+\frac{1}{m+1} \sum_{j=0}^{m-1}(-1)^{j} s_{m-j} \dot{p}_{j+1} . \tag{2.23}
\end{align*}
$$

Furthermore, one obtains from (2.19) and (2.20)

$$
\begin{align*}
& \sum_{j=0}^{m-1}(-1)^{j} s_{m-j} \dot{p}_{j+1} \\
&= \frac{1}{2 \mathrm{i}} \sum_{j=0}^{m-1}(j+1) s_{m-j} \sum_{k=0}^{j}(-1)^{k}\left(s_{j+1-k}-s_{j+1-k}^{*}\right) c_{k} \\
&= \frac{1}{2 \mathrm{i}} \sum_{j=0}^{m-1}(-1)^{j}(j+1) s_{m-j} c_{j+1}-\frac{1}{2 \mathrm{i}} \sum_{j=0}^{m-1}(j+1) s_{m-j} \sum_{k=0}^{j}(-1)^{k} s_{j+1-k}^{*} c_{k} \\
&= \frac{1}{2 \mathrm{i}} \sum_{j=0}^{m-1}(-1)^{j}(j+1) s_{m-j} c_{j+1} \\
&-\frac{1}{2 \mathrm{i}} \sum_{j=0}^{m-1} s_{m-j}^{*}\left(\sum_{k=0}^{j}(-1)^{k} k s_{j-k+1} c_{k}+(-1)^{j}(m-j) c_{j+1}\right) . \tag{2.24}
\end{align*}
$$

Substituting (2.24) into (2.23), we find

$$
\begin{gather*}
\dot{s}_{m+1}=\frac{1}{2 \mathrm{i}}\left(s_{m+1}-s_{m+1}^{*}\right)+\frac{1}{2 \mathrm{i}} \frac{1}{m+1} \sum_{k=0}^{m-1}(-1)^{k} s_{m-k}\left[-(m-k) c_{k+1}+p_{k+1}\right]+\frac{1}{2 \mathrm{i}} \frac{1}{m+1} \\
\times \sum_{k=0}^{m-1}(-1)^{k} s_{m-k}^{*}\left((k+1) c_{k+1}-p_{k+1}-(-1)^{k} \sum_{j=0}^{k}(-1)^{j} j s_{k-j+1} c_{j}\right) . \tag{2.25}
\end{gather*}
$$

On the other hand, we see from (2.10a) and (2.19)

$$
\begin{equation*}
(k+1) c_{k+1}-p_{k+1}=\sum_{j=0}^{k-1}(-1)^{k+j} s_{k-j}\left[p_{j+1}-(k+1) c_{j+1}\right] . \tag{2.26}
\end{equation*}
$$

Introducing (2.26) into the third term on the right-hand side of (2.25), we obtain

$$
\begin{align*}
& \dot{s}_{m+1}=\frac{1}{2 \mathrm{i}}\left(s_{m+1}-s_{m+1}^{*}\right)-\frac{1}{2 \mathrm{i}} \frac{1}{m+1} \sum_{k=0}^{m-1}(-1)^{k} s_{m-k}\left[(m-k) c_{k+1}-p_{k+1}\right] \\
&-\frac{1}{2 \mathrm{i}} \frac{1}{m+1} \sum_{k=1}^{m-1} s_{m-k}^{*} \sum_{j=0}^{k-1}(-1)^{j} s_{k-j}\left[(k-j) c_{j+1}-p_{j+1}\right] \tag{2.27}
\end{align*}
$$

However, as shown in the appendix, the following relation holds:

$$
\begin{equation*}
\sum_{j=0}^{k-1}(-1)^{j} s_{k-j}\left[(k-j) c_{j+1}-p_{j+1}\right]=0 \quad k=1,2, \ldots, m . \tag{2.28}
\end{equation*}
$$

Hence, the second and third terms on the right-hand side of (2.27) vanish and (2.27) becomes

$$
\begin{equation*}
\dot{s}_{m+1}=\frac{1}{2 \mathrm{i}}\left(s_{m+1}-s_{m+1}^{*}\right) \tag{2.29}
\end{equation*}
$$

which implies that (2.22) holds for $j=m+1$, completing the proof of (2.21).
The final step is to construct solutions of (1.3) and this can be done quite easily. Integrating (2.21) yields immediately

$$
\begin{equation*}
s_{j}=a_{j} t+b_{j}+\mathrm{i} a_{j} \quad j=1,2, \ldots, N \tag{2.30}
\end{equation*}
$$

where $a_{j}$ and $b_{j}$ are real constant. Using (2.2a), (2.8) and (2.30), we find the explicit expression of $f$ as follows:

$$
\begin{align*}
& f=\prod_{j=1}^{N}\left(x-x_{j}\right) \\
&=\sum_{j=0}^{N}(-1)^{j} s_{j} x^{N-j} \\
&=x^{N}+\sum_{j=1}^{N}(-1)^{j}\left(a_{j} t+b_{j}+\mathrm{i} a_{j}\right) x^{N-j}  \tag{2.31}\\
& \operatorname{Re} f=x^{N}+\sum_{j=1}^{N}(-1)^{j}\left(a_{j} t+b_{j}\right) x^{N-j}  \tag{2.32}\\
& \operatorname{Im} f=\sum_{j=1}^{N}(-1)^{j} a_{j} x^{N-j} . \tag{2.33}
\end{align*}
$$

We can also confirm by direct calculation that (2.31) indeed satisfies the bilinear equation for $f(2.6)$.

The time evolutions of $x_{1}, x_{2}, \ldots, x_{N}$ are given by the roots of the algebraic equation of order $N, f=0$. However, it is unnecessary to solve the algebraic equation explicitly to construct the solution as already shown by (2.1) and (2.31). This fact should be remarkable since it is difficult in general to solve the algebraic equation of an arbitrary order without recourse to numerical calculations. If we note the relation

$$
\begin{equation*}
\mathrm{i} \ln \left(f^{*} / f\right)=2 \tan ^{-1}(\operatorname{Im} f / \operatorname{Re} f) \tag{2.34}
\end{equation*}
$$

we can express the solution of (1.3) in terms of only real quantities. Thus, we obtain from (2.1), (2.32) and (2.33) the explicit exact solution of (1.3) as follows:

$$
\begin{equation*}
\theta=2 \tan ^{-1} \frac{\sum_{j=1}^{N}(-1)^{j} a_{j} x^{N-j}}{x^{N}+\sum_{j=1}^{N}(-1)^{j}\left(a_{j} t+b_{j}\right) x^{N-j}} . \tag{2.35}
\end{equation*}
$$

The solution (2.35) is real and finite for all $x$ and $t$ and behaves asymptotically for large $x$ as $\dagger$

$$
\begin{equation*}
\theta \sim-\frac{2 a_{1}}{x}+\mathrm{O}\left(x^{-2}\right) \quad x \rightarrow \pm \infty . \tag{2.36}
\end{equation*}
$$

The asymptotic behaviour for large $t$ will be discussed in detail in the next section.

[^1]
## 3. Properties of solutions

### 3.1. Special case

In this section, we shall study the properties of the solution (2.35) in detail. Before discussing the properties for general $N$, we consider two special cases of $N=1,2$. For $N=1$, (2.35) gives

$$
\begin{align*}
& \theta=-2 \tan ^{-1} \frac{a_{1}}{x-a_{1} t-b_{1}}  \tag{3.1}\\
& a_{1}>0 \tag{3.2}
\end{align*}
$$

which represents a pulse moving in the positive $x$ direction with a velocity $a_{1}$ and a centre position being placed on $x=a_{1} t+b_{1}$. The condition (3.2) is necessary in order to satisfy $\operatorname{Im} x_{1}>0($ see $(2.2 b)$ ). Differentiating (3.1) with respect to $x$ yields

$$
\begin{equation*}
\theta_{x}=\frac{2 a_{1}}{\left(x-a_{1} t-b_{1}\right)^{2}+a_{1}^{2}} \tag{3.3}
\end{equation*}
$$

It is interesting to note that this functional form coincides with the one-soliton solution of the во equation (Benjamin 1967, Ono 1975) $\dagger$. Figure 1 depicts a profile of the solution (3.1) where the principal value of $\theta$ has been taken, i.e. the range of $\theta$ has been restricted by $-\pi \leqslant \theta \leqslant \pi$.


Figure 1. Profile of the solution (3.1).
† Strictly speaking, the one-soliton solution of the BO equation, $u_{t}+2 u u_{v}+H u_{x x}=0$, is expressed in the form $u=2 a_{1}\left[\left(x-a_{1}^{-1} t-b_{1}\right)^{2}+a_{1}^{2}\right]^{-1}$. Hence, it is necessary to introduce a scale transformation, $t \rightarrow a_{1}^{-2} t$ in (3.3) in order that both functions coincide exactly.

For $N=2$, (2.35) takes the form of

$$
\begin{equation*}
\theta=-2 \tan ^{-1} \frac{a_{1} x-a_{2}}{\left(x-x_{+}\right)\left(x-x_{-}\right)} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{align*}
& x_{ \pm}=\frac{1}{2}\left\{a_{1} t+b_{1} \pm\left[\left(a_{1} t\right)^{2}+\left(2 a_{1} b_{1}-4 a_{2}\right) t+b_{1}^{2}-4 b_{2}\right]^{1 / 2}\right\}  \tag{3.5}\\
& a_{1}>0  \tag{3.6a}\\
& a_{1} a_{2} b_{1}>a_{1}^{2} b_{2}+a_{2}^{2} \tag{3.6b}
\end{align*}
$$

The time dependences of $x_{1}$ and $x_{2}$ are obtained by solving the algebraic equation of order two, $f=0$, where $f$ is given by (2.31) with $N=2$. The result is expressed as
$x_{1}=\frac{1}{2}\left\{A+\frac{D}{|D|}\left(\frac{C+\left(C^{2}+D^{2}\right)^{1 / 2}}{2}\right)^{1 / 2}+\mathrm{i}\left[B+\left(\frac{-C+\left(C^{2}+D^{2}\right)^{1 / 2}}{2}\right)^{1 / 2}\right]\right\}$
$x_{2}=\frac{1}{2}\left\{A-\frac{D}{|D|}\left(\frac{C+\left(C^{2}+D^{2}\right)^{1 / 2}}{2}\right)^{1 / 2}+\mathrm{i}\left[B-\left(\frac{-C+\left(C^{2}+D^{2}\right)^{1 / 2}}{2}\right)^{1 / 2}\right]\right\}$
where

$$
\begin{align*}
& A=a_{1} t+b_{1}  \tag{3.8a}\\
& B=a_{1}  \tag{3.8b}\\
& C=\left(a_{1} t\right)^{2}+\left(2 a_{1} b_{1}-4 a_{2}\right) t-a_{1}^{2}-4 b_{2}+b_{1}^{2}  \tag{3.8c}\\
& D=2 a_{1}^{2} t+2 a_{1} b_{1}-4 a_{2} . \tag{3.8d}
\end{align*}
$$

Asymptotic forms of $x_{+}, x_{-}, x_{1}$ and $x_{2}$ for large $t$ are given, respectively, as follows.
For $t \rightarrow-\infty$

$$
\begin{align*}
& x_{+} \sim \frac{a_{2}}{a_{1}}-\frac{a_{1} a_{2} b_{1}-a_{1}^{2} b_{2}-a_{2}^{2}}{a_{1}^{3}} t^{-1}  \tag{3.9a}\\
& x_{-} \sim a_{1} t+b_{1}-\frac{a_{2}}{a_{1}}  \tag{3.9b}\\
& x_{1} \sim a_{1} t+b_{1}-\frac{a_{2}}{a_{1}}+\mathrm{i} a_{1}  \tag{3.9c}\\
& x_{2} \sim \frac{a_{2}}{a_{1}}-\frac{a_{1} a_{2} b_{1}-a_{1}^{2} b_{2}-a_{2}^{2}}{a_{1}^{3}} t^{-1}+\mathrm{i} \frac{a_{1} a_{2} b_{1}-a_{1}^{2} b_{2}-a_{2}^{2}}{a_{1}^{3}} t^{-2} \tag{3.9d}
\end{align*}
$$

and for $t \rightarrow+\infty$

$$
\begin{align*}
& x_{+} \sim a_{1} t+b_{1}-\frac{a_{2}}{a_{1}}  \tag{3.10a}\\
& x_{-} \sim \frac{a_{2}}{a_{1}}-\frac{a_{1} a_{2} b_{1}-a_{1}^{2} b_{2}-a_{2}^{2}}{a_{1}^{3}} t^{-1}  \tag{3.10b}\\
& x_{1} \sim a_{1} t+b_{1}-\frac{a_{2}}{a_{1}}+\mathrm{i} a_{1}  \tag{3.10c}\\
& x_{2} \sim \frac{a_{2}}{a_{1}}-\frac{a_{1} a_{2} b_{1}-a_{1}^{2} b_{2}-a_{2}^{2}}{a_{1}^{3}} t^{-1}+\mathrm{i} \frac{a_{1} a_{2} b_{1}-a_{1}^{2} b_{2}-a_{2}^{2}}{a_{1}^{3}} t^{-2} . \tag{3.10d}
\end{align*}
$$

It is observed from (3.9) and (3.10) that $x_{1}$ and $x_{2}$ have the same asymptotic forms when $t \rightarrow \pm \infty$ while $x_{+}$and $x_{-}$exchange their asymptotic forms. The conditions (3.6a) and (3.6b) are required by ( $2.2 b$ ) with $N=2$. A novel aspect of (3.4) is that it has one immovable point, $x=a_{2} / a_{1}$. Indeed, we can show from (3.5) and (3.6) that

$$
\begin{equation*}
x_{-}(t)<a_{2} / a_{1}<x_{+}(t) \tag{3.11}
\end{equation*}
$$

for all $t$, see figure 2. Furthermore, it is easy to see from (3.5) and (3.6) that the following inequalities always hold:

$$
\begin{equation*}
\dot{x}_{ \pm}>0 . \tag{3.12}
\end{equation*}
$$

The profiles of $\dot{x}_{ \pm}$are drawn in figure 3.
The asymptotic behaviour of (3.4) for $t \rightarrow \pm \infty$ is found from (3.9a,b) and (3.10a,b) as
$\theta \sim-2 \tan ^{-1}\left[a_{1} /\left(x-a_{1} t-b_{1}+a_{2} / a_{1}\right)\right]-2 \tan ^{-1}\left[\delta t^{-2} /\left(x-a_{2} / a_{1}+\delta t^{-1}\right)\right]$
with

$$
\begin{equation*}
\delta=\frac{a_{1} a_{2} b_{1}-a_{1}^{2} b_{2}-a_{2}^{2}}{a_{1}^{3}} \tag{3.13b}
\end{equation*}
$$

The first term on the right-hand side of ( $3.13 a$ ) represents a pulse moving in the positive $x$ direction with a velocity $a_{1}$ and it has the same functional form as (3.1) except for


Figure 2. Plot of $x_{ \pm}$and $d\left(\equiv x_{+}-x_{-}\right)$as a function of $t$. The values of parameters are chosen as $a_{1}=1.0, a_{2}=0.5, b_{1}=1.0$ and $b_{2}=0$. In this case, the distance $d$ between $x_{+}$ and $x_{-}$becomes a minimum when $t=0$.


Figure 3. Plot of $\dot{x}_{ \pm}$as a function of $t$. The values of parameters are the same as those for figure 2 . The $\dot{x}_{+}\left(\dot{x}_{-}\right)$approaches to zero indefinitely when $t \rightarrow-\infty(t \rightarrow+\infty)$.
a 'phase shift', $-a_{2} / a_{1}$. On the other hand, the second term represents a pulse with a very narrow width of the order of $\delta t^{-2}$ and the width becomes narrower and narrower as the time goes on. It is almost static since the velocity of the pulse is given by $\delta t^{-2}$ and approaches to zero indefinitely when $t \rightarrow \pm \infty$. Hence, we shall call this pulse the 'static pulse' in the following. The profile of the solution is depicted in figures $4(a)-(c)$ for different times. Thus, one can describe the profile of the solution (3.4) as follows.

For $t \rightarrow-\infty$, the solution is composed of a pulse moving in the positive $x$ direction with a velocity $a_{1}$ and a static pulse with a very narrow width located near $x=a_{2} / a_{1}$ (see figure $4(a)$ ). As time goes on, the static pulse grows wider and wider and eventually behaves like a pulse moving in the positive $x$ direction with a velocity $\dot{x}_{+}$while a moving pulse behaves like a pulse with a velocity $\dot{x}_{-}$(see figure $4(b)$ ). As can easily be seen from (3.5), the distance between the centre positions of two pulses, i.e. $d \equiv x_{+}-x_{-}$, becomes a minimum when $t=2\left(2 a_{2}-a_{1} b_{1}\right) / a_{1}^{2}$ and it takes the value $d_{\text {min }}=2\left(a_{1} \delta\right)^{1 / 2}$ (see figure 2). For $t \rightarrow+\infty$, a pulse with a velocity $\dot{x}_{+}$behaves like a pulse with a constant velocity $a_{1}$. On the other hand, another pulse with a velocity $\dot{x}_{-}$approaches a point $a_{2} / a_{1}$ indefinitely and eventually becomes a static pulse with a very narrow width (see figure $4(c)$ ).

### 3.2. General case

Next, we shall proceed to investigate the properties of (2.35) for an arbitrary positive integer $N$. For this purpose, we first examine the motion of the imaginary part of $x_{n}$ to derive the necessary conditions for $(2.2 b)$. The equation of motion of $\operatorname{Im} x_{n}$ is found from (2.7) as

$$
\begin{gather*}
\operatorname{Im} \dot{x}_{n}=\frac{1}{2 \mathrm{i}}\left[\prod_{\substack{j=1 \\
(j \neq n)}}^{N}\left(1+\frac{2 \mathrm{i} \operatorname{Im} x_{j}}{x_{n}-x_{j}}\right)-\prod_{\substack{j=1 \\
(j \neq n)}}^{N}\left(1-\frac{2 \mathrm{i} \operatorname{lm} x_{j}^{*}}{x_{n}^{*}-x_{j}^{*}}\right)\right] \operatorname{Im} x_{n} \\
\equiv G(t) \operatorname{Im} x_{n} \quad n=1,2, \ldots, N . \tag{3.14}
\end{gather*}
$$

Here, $G(t)$ is a real function of $t$ defined by the first line of (3.14). Integrating (3.14)


Figure 4. Profile of the solution (3.4) for three different values of $t$. The values of parameters are the same as those for figure 2. In the figure, the positions of $x_{\mp}$ are indicated by broken lines. (a) $t=-3.0$, (b) $t=0$, (c) $t=3.0$.


Figure 4. (continued)
now yields

$$
\begin{equation*}
\operatorname{Im} x_{n}(t)=\operatorname{Im} x_{n}\left(t_{0}\right) \exp \left(\int_{t_{0}}^{t} G\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right) \quad n=1,2, \ldots, N \tag{3.15}
\end{equation*}
$$

where $t_{0}$ is an arbitrary integration constant. Equations (3.15) ensure that if $\operatorname{Im} x_{n}\left(t_{0}\right)$ $(n=1,2, \ldots, N)$ are positive for certain $t_{0}$, then $\operatorname{Im} x_{n}(t)>0(n=1,2, \ldots, N)$ hold for all $t \dagger$. In order to simplify the discussion, it is convenient to take $t_{0}$ as a very large value. Therefore, we may investigate the asymptotic solutions of the algebraic equation

$$
\begin{equation*}
f=0 \tag{3.16}
\end{equation*}
$$

for large $t$, where $f$ is given by (2.31). The result for $N=1,2$ suggests that an asymptotic solution of (3.16) will be

$$
\begin{equation*}
x_{1} \sim a_{1} t+b_{1}-a_{2} / a_{1}+\mathrm{i} a_{1} \quad t \rightarrow \pm \infty . \tag{3.17}
\end{equation*}
$$

To confirm this statement, let us introduce a moving coordinate $\xi$

$$
\begin{equation*}
\xi=x-a_{1} t-b_{1} \tag{3.18}
\end{equation*}
$$

and take the limits $t \rightarrow \pm \infty$ with $\xi$ keeping finite. We find from (2.31) in these limits

$$
\begin{equation*}
f \sim a_{\mathrm{i}}^{N-1}\left(\xi-\mathrm{i} a_{1}+a_{2} / a_{1}\right) t^{N-1}+\mathrm{O}\left(t^{N-2}\right) \tag{3.19}
\end{equation*}
$$

[^2]which leads, by (2.1) and (3.18), to the expression
\[

$$
\begin{equation*}
\theta \sim \mathrm{i} \ln \left[\left(x-a_{1} t-b_{1}+a_{2} / a_{1}+\mathrm{i} a_{1}\right) /\left(x-a_{1} t-b_{1}+a_{2} / a_{1}-\mathrm{i} a_{1}\right)\right] . \tag{3.20}
\end{equation*}
$$

\]

Hence, (3.17) results from (3.16) and (3.19). At the same time, the asymptotic form (3.20) implies that the imaginary parts of other ( $N-1$ ) solutions of (3.15) would approach to zero indefinitely. This statement holds for $N=2$ as seen from ( $3.9 c, d$ ) and ( $3.10 c, d$ ). Suggested by these facts, we seek the asymptotic solutions of (3.16) for large $t$ in the form

$$
\begin{equation*}
x=A_{1}+A_{2} t^{-1}+\ldots+\mathrm{i}\left(B_{1} t^{-1}+B_{2} t^{-2}+\ldots\right) \tag{3.21}
\end{equation*}
$$

where $A_{1}, A_{2}, B_{1}$ and $B_{2}$ are unknown real coefficients. Substituting (3.21) into (3.16), we find that these coefficients are determined by the following equations:

$$
\begin{align*}
& V\left(A_{1}\right) \equiv \sum_{j=1}^{N-1}(-1)^{j} a_{j} A_{1}^{N-j}+(-1)^{N} a_{N}=0  \tag{3.22}\\
& B_{1}=0  \tag{3.23}\\
& B_{2}=-A_{2}=\frac{A_{1}^{N}+\sum_{j=1}^{N}(-1)^{j} b_{j} A_{1}^{N-j}}{\sum_{j=1}^{N-1}(-1)^{j}(N-j) a_{j} A_{1}^{N-j-1}} . \tag{3.24}
\end{align*}
$$

Therefore, the necessary conditions for $\operatorname{Im} x_{j}(t)>0,(j=1,2, \ldots, N),(t \rightarrow \pm \infty)$ are expressed as follows:

$$
\begin{align*}
& a_{1}>0  \tag{3.25a}\\
& A_{1} \text { are real and distinct simple zeros of }(3.22)  \tag{3.25b}\\
& B_{2}>0 . \tag{3.25c}
\end{align*}
$$

Let $\alpha_{j}(j=1,2, \ldots, N-1)$ be $N-1$ real and distinct simple zeros of (3.22) and define $P_{n}(n=1,2, \ldots, 2 N-4)$

$$
\begin{equation*}
P_{n}=\sum_{j=1}^{N-1} \alpha_{j}^{n} \quad n=1,2, \ldots, 2 N-4 \tag{3.26}
\end{equation*}
$$

then ( $3.25 b$ ) is equivalent to the following conditions (Takagi 1965):

$$
D_{k} \equiv\left|\begin{array}{cccc}
P_{0} & P_{1} & \ldots & P_{k-1}  \tag{3.27}\\
P_{1} & P_{2} & \ldots & P_{k} \\
\vdots & \vdots & & \vdots \\
P_{k-1} & P_{k} & \ldots & P_{2 k-2}
\end{array}\right|>0 \quad k=1,2, \ldots, N-1 .
$$

The $P_{n}$ are determined uniquely in terms of $a_{1}, a_{2}, \ldots, a_{N}$ by Euler's formula (see (2.8)-(2.10)). It should be noted that the denominator of (3.24) never vanishes due to the condition ( $3.25 b$ ), i.e.

$$
\begin{align*}
\sum_{j=1}^{N-1}(-1)^{j}(N-j) a_{j} \alpha_{n}^{N-j-1} & =\left.\frac{\mathrm{d} V(x)}{\mathrm{d} x}\right|_{x=\alpha_{n}} \\
& =-a_{1} \prod_{\substack{j=1 \\
(j \neq n)}}^{N-1}\left(\alpha_{n}-\alpha_{j}\right) \\
& \neq 0 \quad n=1,2, \ldots, N-1 . \tag{3.28}
\end{align*}
$$

We shall write down the conditions (3.25b) and (3.25c) explicitly in the case of $N=3$ for reference (see ( $3.6 b$ ) for $N=2$ ):

$$
\begin{align*}
\left(\frac{a_{2}}{a_{1}}\right)^{2}>4 \frac{a_{3}}{a_{1}} &  \tag{3.29a}\\
a_{1} a_{3}+a_{1} a_{2} b_{1} & >a_{1}^{2} b_{2}+a_{2}^{2}  \tag{3.29b}\\
& -\left[\left(\frac{a_{2}}{a_{1}}\right)^{2}-4 \frac{a_{3}}{a_{1}}\right]^{1 / 2}<-\frac{a_{2}}{a_{1}}+\frac{2\left(a_{2} a_{3}-a_{1} a_{3} b_{1}+a_{1}^{2} b_{3}\right)}{a_{1} a_{3}+a_{1} a_{2} b_{1}-a_{1}^{2} b_{2}-a_{2}^{2}} \\
& <\left[\left(\frac{a_{2}}{a_{1}}\right)^{2}-4 \frac{a_{3}}{a_{1}}\right]^{1 / 2} . \tag{3.29c}
\end{align*}
$$

These conditions are reduced to those for $N=2$ in the limit of $a_{3}, b_{3} \rightarrow 0$.
Once the conditions ( $2.2 b$ ) have been established for large $t$, they hold for arbitrary $t$ owing to (3.15). Furthermore, the conditions (2.2b) offer important information concerning the properties of zeros of (3.16). To see this, we refer to a famous theorem due to Hermite (Takagi 1965). Let

$$
\begin{equation*}
f(x) \equiv U(x)+\mathrm{i} V(x) \tag{3.30}
\end{equation*}
$$

with

$$
\begin{align*}
& U(x)=x^{N}+\sum_{j=1}^{N}(-1)^{j}\left(a_{j} t+b_{j}\right) x^{N-j}  \tag{3.31a}\\
& V(x)=\sum_{j=1}^{N}(-1)^{j} a_{j} x^{N-j} \tag{3.31b}
\end{align*}
$$

Hermite's theorem states that, if the signature of $\operatorname{Im} x_{j}$ is the same for all $j$, then the zeros of $U(x)=0$ and $V(x)=0$ are all real and simple and are isolated to each other. In order to clarify the latter meaning, let $\beta_{j}$ be $N$ distinct zeros of $U(x)=0$. It tells us that each zeros are ordered such as

$$
\begin{equation*}
\beta_{1}<\alpha_{1}<\ldots<\beta_{N-1}<\alpha_{N-1}<\beta_{N} \tag{3.32}
\end{equation*}
$$

In the present situation, $\beta_{j}(j=1,2, \ldots, N)$ are real functions of $t$ while $\alpha_{j}(j=1$, $2, \ldots, N-1$ ) do not depend on $t$. On account of (3.31) and (3.32), the solution (2.35) can be rewritten in the form $\dagger$

$$
\begin{equation*}
\theta=-2 \tan ^{-1} \frac{a_{1} \Pi_{j=1}^{N-1}\left(x-\alpha_{j}\right)}{\Pi_{j=1}^{N}\left(x-\beta_{j}\right)} \tag{3.33}
\end{equation*}
$$

Asymptotic form of (3.33) for $t \rightarrow \pm \infty$ is found from (3.21)-(3.24) as

$$
\begin{equation*}
\theta \sim-2 \tan ^{-1}\left[a_{1} /\left(x-a_{1} t-b_{1}+a_{2} / a_{1}\right)\right]-2 \sum_{j=1}^{N-1} \tan ^{-1}\left[\delta_{j} t^{-2} /\left(x-\alpha_{j}+\delta_{j} t^{-1}\right)\right] \tag{3.34a}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta_{j}=\frac{\alpha_{j}^{N}+\sum_{k=1}^{N}(-1)^{k} b_{k} \alpha_{j}^{N-k}}{\sum_{k=1}^{N-1}(-1)^{k}(N-k) a_{k} \alpha_{j}^{N-k-1}} \quad j=1,2, \ldots, N-1 \tag{3.34b}
\end{equation*}
$$

[^3]

Figure 5. Rough profile of the solution (2.35) for three different time regions. In the figure, the positions of $\beta_{j}(j=1,2, \ldots, N)$ are indicated by broken lines while those of the $\alpha_{j}$ $(j=1,2, \ldots, N-1)$ are given by the points at which the full line representing the solution (2.35) intersects the $x$ axis. (a) Large negative time region, (b) intermediate time region, (c) large positive time region.
and the $x$ derivative of the expression (3.34a) gives

$$
\begin{align*}
\theta_{x} \sim 2 a_{1} /[(x- & \left.\left.a_{1} t-b_{1}+a_{2} / a_{1}\right)^{2}+a_{1}^{2}\right] \\
& +\sum_{j=1}^{N-1} 2 \delta_{j} t^{-2} /\left[\left(x-\alpha_{j}+\delta_{j} t^{-1}\right)^{2}+\left(\delta_{j} t^{-2}\right)^{2}\right] \\
\sim & 2 a_{1} /\left[\left(x-a_{1} t-b_{1}+a_{2} / a_{1}\right)^{2}+a_{1}^{2}\right]+2 \pi \sum_{j=1}^{N-1} \delta\left(x-\alpha_{j}\right) \tag{3.35}
\end{align*}
$$



Figure 5. (continued)
with the aid of the formula

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{\varepsilon}{x^{2}+\varepsilon^{2}}=\pi \delta(x) \quad(\delta(x): \text { Dirac's delta function }) \tag{3.36}
\end{equation*}
$$

The expression (3.35) expresses the pulse-like nature of the solution more clearly than (3.34a).

Consequently, an overall profile of the solution (2.35) may be pictured as follows (see also figures 5(a)-(c)).

For $t \rightarrow-\infty$, it is composed of a pulse moving in the positive $x$ direction with a velocity $a_{1}$ and $N-1$ static pulses with very narrow widths located near $x=\alpha_{1}$, $x=\alpha_{2}, \ldots, x=\alpha_{N-1}$, respectively (see figure $5(a)$ ). After a lapse of time, these $N-1$ static pulses grow wider and wider and eventually they behave like $N-1$ pulses moving in the positive $x$ direction with velocities $\dot{\beta}_{2}, \dot{\beta}_{3}, \ldots, \dot{\beta}_{N}$ and centre positions being placed on $x=\beta_{2}, x=\beta_{3}, \ldots, x=\beta_{N}$, respectively, while a moving pulse behaves like a pulse with a velocity $\dot{\beta}_{1}$ and centre position being placed on $x=\beta_{1}$ (see figure $5(b)$ ). Therefore, in this situation the solution is considered to be a superposition of $N$ moving pulses. For $t \rightarrow+\infty$, a pulse with a velocity $\dot{\beta}_{N}$ behaves like a pulse with a constant velocity $a_{1}$. On the other hand, other $N-1$ pulses approach to $N-1$ immovable points $x=\alpha_{1}, x=\alpha_{2}, \ldots, x=\alpha_{N-1}$, respectively, and eventually they become to be static pulses with very narrow widths (see figure $5(c)$ ). Thus, we have completed the detailed description on the behaviour of the solution (2.35). The solution has a quite different asymptotic form when it is compared with that of the soliton-type solution. This situation may be clarified by observing the asymptotic expression (3.35) of $\theta_{x}$. It represents the superposition of a moving pulse with a Lorentzian profile and a train of $N-1$ static pulses with delta function profiles. On the other hand, the asymptotic form of the $N$-soliton solution of the во equation (Matsuno 1984), for example, is
expressed as

$$
\begin{equation*}
u \sim \sum_{j=1}^{N} 2 a_{j} /\left[\left(x-a_{j}^{-1} t-x_{0 j}\right)^{2}+a_{j}^{2}\right] \tag{3.37}
\end{equation*}
$$

which represents $N$ moving pulses with Lorentzian profiles. Furthermore, the amplitude of each pulse in (3.34a) is all the same and takes the value of $\pi$ (remember that we are considering the principal value of $\theta$ ). The asymptotic form ( $3.34 a$ ) also has a novel characteristic in comparison with (3.1). The first term on the right-hand side of (3.34a) has the same asymptotic form as (3.1) but it takes into account the effect of interactions between pulses which is represented by a 'phase shift', $-a_{2} / a_{1}$. Finally, it should be noted that when both $a_{N}$ and $b_{N}$ vanish, (2.35) is reduced to a solution which includes $N-1$ pulses.

## 4. Concluding remarks

In this paper, we have developed a systematic method for constructing exact solutions of the sh equation and examined the dynamical properties of solutions in detail. The characteristics of the solution presented here are quite different from those of the usual $N$-soliton solution. If one requires the solution $\theta(x, t)$ be continuous, it has a multistep shape from $\theta(-\infty, t)=0$ to $\theta(+\infty, t)=2 N \pi$. Therefore, the solution (2.35) (or (3.33)) may be named 'kinks' on the analogy of the well known kink solutions of the sine-Gordon equation.

In connection with the soliton theory, it is interesting to find conservation laws, Bäcklund transformations, etc, of the sh equation and these problems are now being pursued.

## Acknowledgments

The author would like to express his sincere thanks to Professor M Nishioka for continual encouragement. He also thanks the referees for their many useful comments.

## Appendix. Proof of (2.28)

Let $J_{k}$ be

$$
\begin{equation*}
J_{k}=\sum_{j=0}^{k-1}(-1)^{j} s_{k-j}\left[(k-j) c_{j+1}-p_{j+1}\right] \quad k=1,2, \ldots, m . \tag{A1}
\end{equation*}
$$

We shall prove (2.28) by a mathematical induction. For $k=1$

$$
\begin{equation*}
J_{1}=-s_{0}\left(c_{1}-p_{1}\right)=0 \tag{A2}
\end{equation*}
$$

by (2.10b) and (2.15a). Assume (2.28) for $k=1,2, \ldots, n(n<m)$, i.e.

$$
\begin{equation*}
J_{k}=0 \quad k=1,2, \ldots, n \tag{A3}
\end{equation*}
$$

Then

$$
\begin{align*}
J_{n+1} & =\sum_{j=0}^{n}(-1)^{j} s_{n+1-j}\left[(n+1-j) c_{j+1}-p_{j+1}\right] \\
& =\sum_{j=0}^{n-1}(-1)^{j+1} s_{n-j}\left[(n-j) c_{j+2}-p_{j+2}\right]+s_{n+1}\left[(n+1) c_{1}-p_{1}\right] . \tag{A4}
\end{align*}
$$

Substituting the relations

$$
\begin{align*}
& c_{j+2}=\sum_{r=0}^{j}(-1)^{j+r} s_{j+1-r} c_{r+1}+(-1)^{j+1} s_{j+2}  \tag{A5}\\
& p_{j+2}=\sum_{r=0}^{j}(-1)^{j+r} s_{j+1-r} p_{r+1}+(-1)^{j+1}(j+2) s_{j+2} \tag{A6}
\end{align*}
$$

which are derived from (2.19) and (2.10a), respectively, into (A4) yields

$$
\begin{equation*}
J_{n+1}=\sum_{j=0}^{n-1} \sum_{r=0}^{j}(-1)^{r+1} s_{n-j} s_{j+1-r}\left[(n-j) c_{r+1}-p_{r+1}\right]+\sum_{j=0}^{n-2}(n-2 j-2) s_{n-j} s_{j+2} \tag{A7}
\end{equation*}
$$

The first term on the right-hand side of (A7) becomes

$$
\begin{align*}
& \sum_{j=0}^{n-1} \sum_{j=r}^{n-1}(-1)^{r+1} s_{n-j} s_{j+1-r}\left[(n-j) c_{r+1}-p_{r+1}\right] \\
&=\sum_{r=0}^{n-1} \sum_{j=0}^{n-r-1}(-1)^{r+1} s_{n-j-r} s_{j+1}\left[(n-j-r) c_{r+1}-p_{r+1}\right] \\
&=\sum_{j=0}^{n-1} s_{j+1} \sum_{r=0}^{n-j-1}(-1)^{r+1} s_{n-j-r}\left[(n-j-r) c_{r+1}-p_{r+1}\right] \\
&=-\sum_{j=0}^{n-1} s_{j+1} J_{n-j} \\
&=0 \tag{A8}
\end{align*}
$$

because of (A3). On the other hand, the second term on the right-hand side of (A7) obviously vanishes. Thus we have

$$
\begin{equation*}
J_{n+1}=0 \tag{A9}
\end{equation*}
$$

which implies that (A3) holds for $k=n+1$, completing the proof of (2.28).

## References

Ablowitz M J and Segur H 1981 Solitons and Inverse Scattering Transform (Philadelphia: SIAM)
Benjamin T B 1967 J. Fluid Mech. 29559
Bullough R K and Caudrey P J (ed) 1980 Solitons. Topics in Current Physics vol 17 (Berlin: Springer)
Calogero F and Degasperis A 1982 Spectral Transform and Solitons I (Amsterdam: North-Holland)
Degasperis A and Santini P M 1983 Phys. Lett. 98A 240
Degasperis A, Santini P M and Ablowitz M J 1985 J. Math. Phys. 262469
Dodd R K, Eilbeck J C, Gibbon J D and Morris H C 1983 Solitons and Nonlinear Wave Equations (New York: Academic)
Fokas A S and Ablowitz M J 1983 Stud. Appl. Math. 681
Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 191095
Hirota 1971 Phys. Rev. Lett. 271192
Joseph R I 1977 J. Phys. A: Math. Gen. 10 L225
Joseph R I and Egri R 1978 J. Phys. A: Math. Gen. 11 L97
Kodama Y, Ablowitz M J and Satsuma J 1982 J. Math. Phys, 23564
Kubota T, Ko D R S and Dobbs D 1978 J. Hydraut. 12157
Matsuno Y 1979a J. Phys. A: Math. Gen. 12619

- 1979b Phys. Lett. 74A 223
_- 1980 J. Phys. A: Math. Gen. 131519

Matsuno Y 1984 Bilinear Transformation Method (New York: Academic)
_- 1986 Phys. Lett. 119A 229
1987 Phys. Lett. 120A 187
Ono H 1975 J. Phys. Soc. Japan 391082
Santini P M, Ablowitz M J and Fokas A S 1985 Preprint 47 INS
Satsuma J and Ishimori Y 1979 J. Phys. Soc. Japan 46681
Takagi T 1965 Lecture on Algebra (Tokyo: Kyoritsu Shuppan) (in Japanese)


[^0]:    $\dagger$ It should be remarked that the dependent variable transformation for $\theta_{\mathrm{v}}$ is the same as that used for the bo equation (Matsuno 1979a, 1980).

[^1]:    †The principal value of $\theta$ has been taken. This convention will be used in the next section.

[^2]:    + In a special situation, $G(t)$ has singularities. For instance, in the case of $N=2$, setting $a_{1} b_{1}=2 a_{2}$ and $a_{1}^{2}+4 b_{2}=b_{1}^{2}$ in (3.7a) and (3.7b), which are consistent with (3.6), yields $x_{1}(t)=x_{2}(t)$ at $t=0$. However, a careful investigation of the behaviour of $x_{1}$ and $x_{2}$ near $t=0$ gives an estimate, $\left|x_{1}(t)-x_{2}(t)\right| \sim \mathrm{O}\left(|t|^{1 / 2}\right)$ and therefore $|G(t)| \sim \mathrm{O}\left(|t|^{-1 / 2}\right)$. However, this singularity is harmless since it is integrable, namely, the integral $\int_{t_{0}}^{t} G\left(t^{\prime}\right) \mathrm{d} t^{\prime}$ has finite value at $t=0$. For general $N$, the situation would be the same as that for the case of $N=2$ since only a two-body interaction acts among $x_{n}(n=1,2, \ldots, N)$ as seen from the equation of motion for $x_{n}$. One can observe that the velocity, $\operatorname{Im} \dot{x}_{n}$ becomes slower and slower when $\operatorname{Im} x_{n}$ approaches to zero indefinitely and therefore the sign of $\operatorname{Im} x_{n}$ is unchanged throughout the motion.

[^3]:    - If we use the Hermite theorem, the solution (2.31) (or (3.33)) is derived quite simply as follows. Equations (3.30) and (2.6) imply $U_{t} / V+V_{t} / U=1$ and since the zeros of $U$ and $V$ are different (Hermite theorem) the only possibility is that $U_{t}=(1-\lambda) V$ and $V_{t}=\lambda U$. Finally, from the fact that the coefficient of $x^{N}$ in $f(x, t)$ is unity, there follows that $\lambda=0$ and therefore that $f_{t}=\operatorname{Im} f$, namely equation (2.31). The author thanks one of the referees for this useful comment.

