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Kinks of the sine-Hilbert equation and their dynamical motions 

Yoshimasa Matsuno 
Department of Physics, Faculty of Liberal Arts, Yamaguchi University, Yamaguchi 753, 
Japan 

Received 12 September 1986 

Abstract. An exact method for constructing exact solutions of the sine-Hilbert ( S H )  equation 
is developed. It is shown that the S H  equation can be transformed into a system of 
non-linear ordinary differential equations through a dependent variable transformation. 
Furthermore, this system of equations is transformed into a system of decoupled linear 
ordinary differential equations. Exact solutions of the SH equation are then constructed 
by means of a simple integration. The dynamical properties of the solutions are also 
studied in detail. The solution is interpreted as a superposition of N pulses which may 
be termed kinks, where N is a positive integer. Asymptotically for large time, it is composed 
of a pulse with a constant velocity and N - 1 'static pulses'. This is a novel characteristic 
of the solution, unlike the well known N-soliton solution which behaves like N moving 
pulses for large time. 

1. Introduction 

In recent studies of soliton theory, much attention has been paid to non-linear integro- 
differential equations. Among these equations, the Benjamin-Ono ( BO) equation 
(Benjamin 1967, Ono 1975) and the intermediate long wave ( I L W )  equation (Joseph 
1977, Joseph and Egri 1978, Kubota er a1 1978) are typical examples. The various 
exact methods have been developed in order to solve these equations. The inverse 
scattering method (Gardner et a1 1967, Ablowitz and Segur 1981, Calogero and 
Degasperis 1982, Dodd et a1 1983) and the bilinear transformation method (Hirota 
1971, Bullough and Caudrey 1980, Matsuno 1984) are powerful tools for analysing 
certain classes of non-linear evolution equations. Both methods have been applied 
successfully to the BO (Matsuno 1979a, 1980, Satsuma and Ishimori 1979, Fokas and 
Ablowitz 1983) and the I L W  (Matsuno 1979b, Kodama et a1 1982) equations and the 
N-soliton and the N-periodic wave solutions for these novel integro-differential 
equations are now available. 

Recently, a class of non-linear integro-diff erential equations has been found in 
association with a matrix spectral problem (Degasperis and Santini 1983). The so-called 
sine-Hilbert ( S H )  equation belongs to this class of equations. In the original version 
of the S H  equation due to Degasperis and Santini (1983), it is expressed as the following 
system of non-linear integro-differential equations 

U, = vHv ( l . la)  

U, = uHv. (1.lb) 

0305-4470/87/123587 + 20$02.50 @ 1987 IOP Publishing Ltd 3587 



3588 Y Matsuno 

Here, U = u(x, t )  and U = U(X, 1 )  are scalar functions of two variables, x and t, the 
integral operator H defined by 

is the Hilbert transform (the symbol P in (1.2) stands for the Cauchy principal value) 
and the subscript t appended to U and U denotes partial differentiation with respect to t. 

Subsequently, Degasperis et a1 ( 1985) and Santini et a1 (1985) have demonstrated 
that the system of equations (1.1 ) can be associated with a Riemann-Hilbert spectral 
problem. These authors introduced a new dependent variable, 0 = e(x, t ) ,  through the 
relations U = i sin e and U = (1 + U’)”’ = cos 0 and took account of a property of the 
H operator, H 2 =  -1 to recast (1.1) into the following single equation which they 
named the S H  equation: 

He,  = -sin 8. (1.3) 

The SH equation is derived formally from the sine-Gordon equation, e,, = -sin e if we 
replace the x derivative by the Hilbert transform. This formal derivation is entirely 
analogous to that of the BO equation from the Korteweg-de Vries equation. 

The construction of pure soliton solutions has been performed by means of a 
Riemann-Hilbert scattering method (Santini et al 1985). However, these authors did 
not present the explicit expression of an N-soliton solution for N 3 2. 

The purpose of the present paper is to develop a systematic method for constructing 
exact non-periodic solutions of (1.3) which are real and finite over all x and t and to 
analyse the properties of the solutions in detail. The method of construction developed 
in this paper stems quite naturally from the bilinear transformation method introduced 
by Hirota (1971). This paper also serves to amplify the results of a previous note 
(Matsuno 1986). Finally, it should be remarked that the periodic solutions of (1.3) 
which reduce, in an appropriate limit, to the non-periodic solutions presented here 
were constructed quite recently (Matsuno 1987). 

In § 2, we show that the SH equation can be transformed into a system of non-linear 
ordinary differential equations through a dependent variable transformation. At the 
same time, it is shown that this system of equations is equivalent to a bilinear equation. 
The system of equations is furthermore converted into a system of decoupled linear 
ordinary differential equations. Exact solutions of (1.3) are then constructed by a 
simple integration. In § 3, the properties of the solutions are studied in detail. The 
solution presented is interpreted as a superposition of N pulses, where N is positive 
integer. However, as a result of interactions between pulses, the solution is shown to 
be composed of a pulse moving in the positive x direction with a constant velocity 
and N - 1 ‘static pulses’ with very narrow widths in the limit of large time. This is a 
remarkable property of solutions which is quite unlike the asymptotic behaviour of 
the usual N-soliton solution. Section 4 is devoted to concluding remarks. 

2. Method for exact solution 

In this section, we shall develop a systematic method for constructing exact solutions 
of (1.3) which are real and finite over all x and t and satisfy the boundary conditions 
O,+O as x+*tco. 
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First of all, let us introduce the following dependent variable transformation 

e = i In(f*/f) (2.1) 

Im x, ( t )  > 0 j = 1 , 2 ,  . . . ,  N x, # x, for n # m (2.26) 

where xj( j  = 1 , 2 , .  . . , N )  are complex functions o f t  and * denotes complex conjugatet. 
Then, it readily follows from (1.2), (2.1) and (2.2) that 

= f (L+L) x* 
1-1 x-xi x-x,* 

= -(ln(f*f)) ,  

where we have used the formula 

(2.3) 

(2.4) 

In  (2.3), the dot appended to x, and xf means differentiation with respect to t. 
Substituting (2.1), (2.2) and (2.3) into (1.3), equation (1.3) is transformed into the form 

It should be noted that (2.5) is equivalent to the following bilinear equation: 

Multiplying both sides of (2.5) by x - x, (n = 1,2 ,  . . . , N )  and then putting x = x,, 
we obtain a system of non-linear ordinary differential equations for x, as follows: 

Therefore, in the present situation the problem considered here has been reduced to 
solve dynamical motions of N variables, xl, x2, . . . , xN. 

We shall now show that the system of equations (2.7) can be linearised by an 
appropriate procedure and motions of x, ,  x2 , .  . . , xN are determined by solving an 
algebraic equation of order N. It will be demonstrated, however, that the solutions 
of (1.3) can be constructed without solving the algebraic equation explicitly. 

t I t  should be remarked that the dependent variable transformation for e, is the same as that used for the 
BO equation (Matsuno 1979a, 1980). 
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In the process of linearisation, it is a key point to introduce the following poly- 
nomials s,, and pn  (n  = 1,2 , .  . . , N ) :  

N 

S N = n  x, 
I - 1  

N 

P n  = 1 x," n = l , 2 ,  . . . ,  N 
J = I  

where s, ( n  = 1,2, . . . , N )  are elementary symmetric functions of xl,  x2,  
is well known, the p,, and s, are related by Euler's formula 

n - l  

s , - jpj  + (- l)"-'ns, n = 2 , 3 ,  . . . ,  N p n =  (--1),,-I-J 
j = l  

PI = S I .  

A few of p,,  are given by 

p2 = -2s2 + s: 
p 3 = 3 s 3 - 3 s , s 2 + s :  

p4= -4s,+4s,s,-4s:s2+2s:+s:. 

( 2 . 8 ~ )  

(2.86) 

( 2 . 8 ~ )  

(2.9) 

, XN. AS 

( 2 . 1 0 ~  

(2.10b 

( 2 . 1 1 ~  

(2.1 1 b) 

(2.11c) 
As the first step for constructing solutions of (1.3), we shall derive the time evolution 

of p,, .  Before entering into detail, it is useful to note the following formulae: 

(2.13) 

where 8 k , N - l  is Kronecker's delta function and c",-~ and d jmJ  in (2.13) are determined 
successively by the following recursion relations: 

1 (-l)"-jcJs,,_J = o  n = 1,2, .  . . , m 
j = O  

m 

1 ( -  1 )"-'cJs,-, + d("i,,-,, = 0 

c o = s o =  1. 

n = m + 1, m + 2, . . . , m + N 
J = o  

Explicitly, the first few of cj are written as 

CI = SI 

c 2 = - s 2 + s :  

c ,  = sj -2s, s2+ s: 

c4 = - s4 + 2s, s3 - 3s: s2 + s: + s: . 

( 2 . 1 4 ~ )  

(2.146) 

( 2 . 1 4 ~ )  

( 2 . 1 5 ~ )  

(2.156) 

( 2 . 1 5 ~ )  

(2.15d) 
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The relation (2.12) is a consequence of Lagrange's interpolation formula. It can be 
proved easily by considering the contour integral 

where the integration is performed along a closed contour containing all the x,. 
It immediately follows from (2.12), (2.13) and (2.146) that 

Under these preparations, it is straightforward to derive the equation which governs 
the time evolution of p n i l .  We first use (2.7) and (2.12) to obtain 

Owing to (2.12) and (2.16), (2.17) becomes 

k 

k = O  J = o  

(2.17) 

(2.18) 

On the other hand, we notice the following relation which stems from ( 2 . 1 4 ~ )  with 
n = k + l  ( k = 0 ,  1, . . . ,  m-1) 

(2.19) 

Substituting (2.19) into the third term on the right-hand side of (2.18), one arrives at 
the final result 

( - l ) " ( m + l )  
(-l)k(sm+l-k-s*,+I-k)Ck m = 0 , 1 ,  . . . ,  N - 1 .  (2.20) 

2i k = O  
I j m + l =  

The second step, which is most important in this paper, is to derive the time 
evolution of sj ( j  = 1,2 , .  . . , N ) .  It is expressed simply as 

j = l , 2  , . . . ,  N. 
1 
2i 

i. =- (s -sf)  = Im sJ (2.21) 

In contrast to (2.7), (2.21) is a system of decoupled linear ordinary differential equations 
and the integration of which can be readily performed. We shall now prove (2.21) by 
a mathematical induction. Equation (2.21) wi th j  =,l  holds obviously because of (2.20) 
with m = O  and pI =s l  (see (2.10b)). Assume (2.21) f o r j =  1, 2, .  . . , m, i.e. 

1 
j .  J = - 2 i J  (s - S * )  J j = 1 , 2  ,..., m. (2.22) 
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Then, it follows from (2.10u), (2.20) and (2.22) that 

Furthermore, one obtains from (2.19) and (2.20) 

1 m-1 

=- ( - l ) J ( j+ l )sm- /c /+ l  
2i J = ~  

(2.23) 

(2.24) 

Substituting (2.24) into (2.23), we find 

On the other hand, we see from ( 2 . 1 0 ~ )  and (2.19) 

Introducing (2.26) into the third term on the right-hand side of (2.25), we obtain 

(2.27) 

However, as shown in the appendix, the following relation holds: 

k - 1  

C (-l)JSk-J[(k-j)CJfl -p/+11 = o  k = 1 , 2  , . . . ,  m. (2.28) 
J = O  
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Hence, the second and third terms on the right-hand side of (2.27) vanish and  (2.27) 
becomes 

which implies that (2.22) holds for j = m + 1,  completing the proof of (2.21). 

Integrating (2.21) yields immediately 
The final step is to construct solutions of (1 .3)  and this can be done quite easily. 

sl = ajt + b, + ia, j = 1 , 2 ,  . . . ,  N (2.30) 

where aj and b, are real constant. Using (2.2a), (2.8) and (2.30), we find the explicit 
expression off  as follows: 

N 

= ( - l ) ’ s ,XN-’  
/=0 

N 

= x N +  c (-l)’(a,t+b,+iu,)xN-’ 
/ = I  

N 

R e f = x N +  1 ( - l ) ’ (a , t+bJ)xN-’  
] = I  

(2.31) 

(2.32) 

(2.33) 

We can also confirm by direct calculation that (2.31) indeed satisfies the bilinear 
equation for f (2.6). 

The time evolutions of X I ,  x2 ,  . . . , xN are given by the roots of the algebraic equation 
of order N, f= 0. However, it is unnecessary to solve the algebraic equation explicitly 
to construct the solution as already shown by (2.1) and (2.31). This fact should be 
remarkable since it is difficult in general to solve the algebraic equation of an arbitrary 
order without recourse to numerical calculations. If we note the relation 

i In(f*/f) = 2 t an- ’ ( Imf /Ref)  (2.34) 

we can express the solution of (1.3) in terms of only real quantities. Thus, we obtain 
from (2.1), (2.32) and (2.33) the explicit exact solution of (1 .3 )  as follows: 

N (-l)Ja,xN-J 

X N  +z;”=, (-l)’(a,t+b,)xN-J‘ 
e = 2 tan-’ (2.35) 

The solution (2.35) is real and finite for all x and t and behaves asymptotically for 
large x a s t  

X+*cO. (2.36) e--- 2 a l  + O( x-2, 
X 

The asymptotic behaviour for large r will be discussed in detail in the next section. 

t The principal value of 0 has been taken. This convention will be used in the next section 
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3. Properties of solutions 

3.1. Special case 

In this section, we shall study the properties of the solution (2.35) in detail. Before 
discussing the properties for general N, we consider two special cases of N = 1,2 .  For 
N = 1 ,  (2.35) gives 

a' 
x - a,  t - b, 

0 = -2 tan-' (3.1) 

a,>O (3.2) 

which represents a pulse moving in the positive x direction with a velocity a,  and a 
centre position being placed on x = a, t + b, . The condition (3.2) is necessary in order 
to satisfy Im xl > 0 (see (2.2b)). Differentiating (3.1) with respect to x yields 

It is interesting to note that this functional form coincides with the one-soliton solution 
of the BO equation (Benjamin 1967, Ono 1975)t. Figure 1 depicts a profile of the 
solution (3.1) where the principal value of 0 has been taken, i.e. the range of 8 has 
been restricted by -T s 0 s rr. 

4.0 

-4 .0  I 
Figure 1. Profile of the solution (3 .1) .  

f Strictly speaking, the one-soliton solution of the BO equation, U ,  + 2uu, + Hu,, = 0, is expressed in the 
form U = Z a , [ ( x - a ; ' r -  b , ) 2 + a : ] - ' .  Hence, it is necessary to introduce a scale transformation, r +  a ; * (  in 
( 3 . 3 )  in order that both functions coincide exactly. 
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For N = 2 ,  ( 2 . 3 5 )  takes the form of 

a,x-a,  
8 = -2  tan-’ 

(x-x+)(x-x-)  (3 .4)  

where 

X+ = + { U ,  t +  bl * [ ( U ,  t ) ’ + ( 2 ~ ,  b ,  - 4 a 2 ) t +  b : -4b2]1 /2 }  ( 3 . 5 )  

a,>O ( 3 . 6 ~ )  

a , a 2 b , > a : b 2 + a : .  (3 .6b)  
The time dependences of x1 and x2 are obtained by solving the algebraic equation of 
order two, f =  0, where f is given by (2.31) with N = 2. The result is expressed as 

+ i  .[ B+ ( - C + ( C 2 + D 2 ) ” 2 ) ” 2 ] ]  
(3 .7a)  

2 

x - -  ’-:{ A-- lDl( D C + ( C ’ + D 2 ) 1 ’ 2 ) 1 i 2  2 + i  [ B -  ( - C + ( C 2 + D 2 ) ” 2  2 ) 1 i 2 ] ]  (3 .76)  

where 

( 3 . 8 ~ )  

(3 .86)  

( 3 . 8 ~ )  

D = 2 ~ :  t + 2 ~ 1  b,  - 4 4 .  (3 .8d )  
Asymptotic forms of x+, x-, x, and x2 for large t are given, respectively, as follows. 

For t +  -CC 

(3 .9a)  

(3 .9b)  

and for t + + m  

(3 .10~)  

(3.10b) 
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It is observed from (3.9) and (3.10) that x, and x2 have the same asymptotic forms 
when t + *a3 while x, and x- exchange their asymptotic forms. The conditions ( 3 . 6 ~ )  
and (3.6b) are required by (2.26) with N = 2. A novel aspect of (3.4) is that it has 
one immovable point, x = a 2 / a , .  Indeed, we can show from (3.5) and (3.6) that 

x - ( t ) < a 2 / a l < x + ( t )  (3 .11)  

for all t, see figure 2. Furthermore, it is easy to see from (3 .5)  and (3.6) that the 
following inequalities always hold: 

x* > 0. (3.12) 

The asymptotic behaviour of (3.4) for t + *CO is found from (3.9~2, b) and (3.10a, 6 )  

( 3 . 1 3 ~ )  

The profiles of x* are drawn in figure 3. 

as 

6 - -2 tan-'[a,/(x - a,  t - b, + a 2 / a , ) ]  - 2 tan-'[6tC2/(x - a2 /a l  + st - ' ) ]  
with 

(3.136) 

The first term on the right-hand side of (3.13a) represents a pulse moving in the positive 
x direction with a velocity a ,  and it has the same functional form as (3.1) except for 

Figure 2. Plot of x, and d (=x+-x - )  as a function of f. The values of parameters are 
chosen as a ,  = 1.0, a2 = 0.5, b ,  = 1.0 and b, = 0. In this case, the distance d between x+ 
and x- becomes a minimum when f = 0. 
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- 8.0 - 4.0 0 4.0 8.0 
t 

Figure 3. Plot of x* as a function of 1. The values of parameters are the same as those 
for figure 2. The x+(x-) approaches to zero indefinitely when t + -a, ( t  + +CO). 

a ‘phase shift’, - a 2 / a , .  On the other hand, the second term represents a pulse with 
a very narrow width of the order of and the width becomes narrower and narrower 
as the time goes on. It is almost static since the velocity of the pulse is given by 
and approaches to zero indefinitely when t +  fa. Hence, we shall call this pulse the 
‘static pulse’ in the following. The profile of the solution is depicted in figures 4( a ) - (  c )  
for different times. Thus, one can describe the profile of the solution (3.4) as follows. 

For t += -a, the solution is composed of a pulse moving in the positive x direction 
with a velocity a ,  and a static pulse with a very narrow width located near x = a 2 / a 1  
(see figure 4( a ) ) .  As time goes on, the static pulse grows wider and wider and eventually 
behaves like a pulse moving in the positive x direction with a velocity 1, while a 
moving pulse behaves like a pulse with a velocity x- (see figure 4(b)).  As can easily 
be seen from (3.9,  the distance between the centre positions of two pulses, i.e. 
d =x+-x- ,  becomes a minimum when t = 2 ( 2 a 2 - a ,  b,)/a: and it takes the value 
dmi, = 2(a ,  S)’” (see figure 2 ) .  For t + +a, a pulse with a velocity x+ behaves like a 
pulse with a constant velocity U , .  On the other hand, another pulse with a velocity 
x- approaches a point a J a ,  indefinitely and eventually becomes a static pulse with a 
very narrow width (see figure 4(c)). 

3.2. General case 

Next, we shall proceed to investigate the properties of (2.35) for an arbitrary positive 
integer N. For this purpose, we first examine the motion of the imaginary part of x, 
to derive the necessary conditions for (2.26). The equation of motion of Im x, is found 
from (2.7) as 

= G (  t )  Im x, n = l , 2  , . . . ,  N. (3.14) 

Here, G ( t )  is a real function of t defined by the first line of (3.14). Integrating (3.14) 
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2.0 - 

I 
I 
I 

I 
I U 

E 0. I 
- 6.0 - 4.0 I -2.0 

I 

I 

- 2 . 0 -  

- 4 .0L  

4.0 

2 .o 

- 
'c) 

L z o  

- 2.0 

- 4.0 

I 

Figure4. Profile of the solution (3.4) for three different values off .  The values of parameters 
are the same as those for figure 2. In the figure, the positions of x, are indicated by broken 
lines. ( a )  f = -3.0, (6)  r = 0, ( c )  f = 3.0. 
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- 4 . o L  

Figure 4. (continued) 

now yields 

Im x, ( t ) = Im x, ( to) exp ( 1 G( t ') d t ) n = 1 , 2  , . . . ,  N (3.15) 
ro 

where to is an arbitrary integration constant. Equations (3.15) ensure that if Im x, ( t o )  
( n  = 1, 2 , .  . . , N )  are positive for certain to,  then Im x, ( t )  > 0 ( n  = 1, 2 , .  . . , N )  hold 
for all t t .  In order to simplify the discussion, it is convenient to take to as a very large 
value. Therefore, we may investigate the asymptotic solutions of the algebraic equation 

f-0 (3.16) 

for large t ,  where f is given by (2.31). The result for N = 1,2  suggests that an asymptotic 
solution of (3.16) will be 

(3.17) x, - a ,  t + b, - a J a l  + ia, t + f o O .  

To confirm this statement, let us introduce a moving coordinate 6 
( = x -  a ,  t - b, (3.18) 

and take the limits t + *CO with ( keeping finite. We find from (2.31) in these limits 

(3.19) f- a ;" - I ( (  - ia ,  + a 2 / a , ) t N - '  + o(r"-*) 
t In a special situation, G ( f j  has singularities. For instance, in the case of N = 2, setting a,  b ,  =?a, and 
a : + 4 b 2 =  b: in (3.70) and (3.7b), which are consistent with (3.6), yields x , ( t )  =x2(r) at r = O .  However, a 
careful investigation of the behaviour of x, and x2 near t = 0 gives an estimate, Ixl( t j  - x , ( t ) i  - O(lfl''2) and 
therefore /G(t) l  -O(lfl-"2). However, this singularity is harmless since it is integrable, namely, the integral 
j:, G(f ' )  df' has finite value at t = 0. For general N,  the situation would be the same as that for the case of 
N = 2 since only a two-body interaction acts among x,, ( n  = 1 , 2 , .  . . , N j  as seen from the equation of motion 
for x,. One can observe that the velocity, Im in becomes slower and slower when Im x,, approaches to zero 
indefinitely and therefore the sign of Im x, is unchanged throughout the motion. 
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Dk=  

which leads, by (2.1) and (3.18), to the expression 

~ - i l n [ ( x - a l t - b l + a 2 / a l + i a l ) / ( x - a l  t - b l + a 2 / a l - i a l ) ] .  (3.20) 

Hence, (3.17) results from (3.16) and (3.19). At the same time, the asymptotic form 
(3.20) implies that the imaginary parts of other ( N - 1 )  solutions of (3.15) would 
approach to zero indefinitely. This statement holds for N = 2 as seen from (3.9c, d )  
and (3.10c, d ) .  Suggested by these facts, we seek the asymptotic solutions of (3.16) 
for large t in the form 

x = A , + A , t - ’ + . .  . + i ( B , t - 1 + B z t - 2 + . . . )  (3.21) 

where A I ,  A 2 ,  B1 and B2 are unknown real coefficients. Substituting (3.21) into (3.16), 
we find that these coefficients are determined by the following equations: 

Po PI . .  . p k - 1  

(3.27) PI p 2  5 > o  . k = l , 2  , . . . ,  N - 1 .  

P k - 1  P k  . . .  P 2 k - 2  

N-I  

V ( A I ) =  (-l)Ja,A:-J+(-l)Na,=O 
j = 1  

(3.22) 

B, = O  (3.23) 

(3.24) 

Therefore, the necessary conditions for Im xj ( t )  > 0, ( j  = 1, 2, . . . , N ) ,  ( t  + *a) are 
expressed as follows: 

a,>O ( 3 . 2 5 ~ )  

A ,  are real and distinct simple zeros of (3.22) (3.256) 

B,> 0. ( 3 . 2 5 ~ )  

Let aj ( j  = 1 , 2 , .  . . , N - 1) be N - 1 real and distinct simple zeros of (3.22) and define 
P, ( n = l ,  2, . . . ,  2 N - 4 )  

(3.26) 

N - I  

=-a1 j = 1  n (%-a , )  

f O  n = 1 , 2  , . . . ,  N-1. (3.28) 
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We shall write down the conditions (3.256) and ( 3 . 2 5 ~ )  explicitly in the case of N = 3 
for reference (see (3.6b) for N = 2): 

( 3 . 2 9 ~ )  

< [ (2) - 4 21 (3 .294  

These conditions are reduced to those for N = 2 in the limit of a3 ,  b3 + 0. 
Once the conditions (2.26) have been established for large t, they hold for arbitrary 

t owing to (3.15). Furthermore, the conditions (2.26) offer important information 
concerning the properties of zeros of (3.16). To see this, we refer to a famous theorem 
due to Hermite (Takagi 1965). Let 

f ( x ) =  U ( x ) + i V ( x )  (3.30) 

with 
N 

U ( x ) = x N +  ( - l ) J ( a , t + b j ) x N - J  
, = I  

hi 

V ( x )  = 2 ( - l )Ja,xN-’ ,  
J = 1  

( 3 . 3 1 ~ )  

(3.31b) 

Hermite’s theorem states that, if the signature of Im xj is the same for all j, then the 
zeros of U ( x )  = 0 and V ( x )  = 0 are all real and simple and are isolated to each other. 
In order to clarify the latter meaning, let pj be N distinct zeros of U ( x )  = 0. It tells 
us that each zeros are ordered such as 

p1 < f f l < ,  . < p N - 1  < f f N - 1  < P N .  (3.32) 
In the present situation, pj ( j  = 1 ,  2 , .  . . , N )  are real functions of t while aj ( j  = 1,  
2 , .  . . , N - 1) do not depend on t .  On account of (3.31) and (3.32), the solution (2.35) 
can be rewritten in the form? 

a ,  n;”,;l ( x  - ffj) 

rIE1 ( x - p j )  . 
e = -2 tan-’ (3.33) 

Asymptotic form of (3.33) for t + *too is found from (3.21)-(3.24) as 
N - l  

8 - -2 tan-’[ a l / ( x  - a, t - b, + a z / a , ) ]  - 2 c tan-’[ 6, t C 2 / ( x  - 0;. + t i j t - ’ ) ]  ( 3 . 3 4 ~ )  
j = l  

with 

t If we use the Hermite theorem, the solution (2.31) (or (3.33)) is derived quite simply as follows. Equations 
(3.30) and (2.6)  imply U,/ V +  V,/ U = 1 and since the zeros of U and V are different (Hermite theorem) 
the only possibility is that U, = (1  - A  ) V and V, = A U. Finally, from the fact that the coefficient of x N  in 
f ( x ,  t )  is unity, there follows that A = O  and therefore that f, = I m f ,  namely equation (2.31). The author 
thanks one of the referees for this useful comment. 
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e 
4 

Figure 5. Rough profile of the solution (2.35) for three different time regions. In the figure, 
the positions of p, (j = 1,2, .  . . , N )  are indicated by broken lines while those of the a, 
( j  = 1 , 2 , .  . . , N - 1) are given by the points at which the full line representing the solution 
(2.35) intersects the x axis. ( a )  Large negative time region, ( b )  intermediate time region, 
(c )  large positive time region. 

and the x derivative of the expression ( 3 . 3 4 ~ )  gives 

~ , - ~ u , / [ ( x - u , ~ - ~ , + u , / u , ) ~ + u : ]  

N-1 + 2 6, f -2/ [ ( x  - a; + 8, f - ) + ( 8; r - 2, '1 
J - 1  

N - l  - 2a,/[(x - a, t - b, + a 2 / a , ) 2 +  a:]+27r 6(x - a;) 
j = l  

(3.35) 
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1 

Figure 5. (continued) 

with the aid of the formula 

& 
lim -- 2 - .rrS(x) 
E + O  X 2 + &  

(S(x): Dirac's delta function). (3.36) 

The expression (3.35) expresses the pulse-like nature of the solution more clearly than 
(3 .34a) .  

Consequently, an overall profile of the solution (2.35) may be pictured as follows 
(see also figures 5 ( a ) - ( c ) ) .  

For t +  -a, it is composed of a pulse moving in the positive x direction with a 
velocity a ,  and N-1 static pulses with very narrow widths located near x = al, 
x = a*, . . . , x = aN-,, respectively (see figure 5 ( a ) ) .  After a lapse of time, these N - 1 
static pulses grow wider and wider and eventually they behave like N - 1 pulses moving 
in the positive x direction with velocities b2,  b 3 , .  . . , bN and centre positions being 
placed on x = p 2 ,  x = p 3 ,  . . . , x = PN, respectively, while a moving pulse behaves like 
a pulse with a velocity 8, and centre position being placed on x = PI (see figure 5 (  6)). 
Therefore, in this situation the solution is considered to be a superposition of N moving 
pulses. For t ++a ,  a pulse with a velocity bN behaves like a pulse with a constant 
velocity a, .  On the other hand, other N - 1 pulses approach to N - 1 immovable 
points x = a,, x = a2, . . . , x =  CY^-^, respectively, and eventually they become to be 
static pulses with very narrow widths (see figure 5(c) ) .  Thus, we have completed the 
detailed description on the behaviour of the solution (2.35).  The solution has a quite 
different asymptotic form when it is compared with that of the soliton-type solution. 
This situation may be clarified by observing the asymptotic expression (3.35) of Ox. It 
represents the superposition of a moving pulse with a Lorentzian profile and a train 
of N - 1 static pulses with delta function profiles. On the other hand, the asymptotic 
form of the N-soliton solution of the BO equation (Matsuno 1984), for example, is 



3604 Y Matsuno 

expressed as 
N 

/ = 1  
u - c 2a,/[(x - - / - I t  -xoJ)2+a; ]  (3.37) 

which represents N moving pulses with Lorentzian profiles. Furthermore, the ampli- 
tude of each pulse in ( 3 . 3 4 ~ )  is all the same and  takes the value of 7~ (remember that 
we are considering the principal value of 6). The asymptotic form ( 3 . 3 4 ~ )  also has a 
novel characteristic in comparison with (3.1). The first term on the right-hand side of 
( 3 . 3 4 ~ )  has the same asymptotic form as (3.1) but it takes into account the effect of 
interactions between pulses which is represented by a ‘phase shift’, - a z / a , .  Finally, 
it should be noted that when both a N  and bN vanish, (2.35) is reduced to a solution 
which includes N - 1 pulses. 

4. Concluding remarks 

In this paper, we have developed a systematic method for constructing exact solutions 
of the SH equation and  examined the dynamical properties of solutions in detail. The 
characteristics of the solution presented here are quite different from those of the usual 
N-soliton solution. If one requires the solution O(x, t )  be continuous, it has a multistep 
shape from e(-co, t )  = 0 to 6(+co, t )  = 2N77. Therefore, the solution (2.35) (or (3.33)) 
may be named ‘kinks’ on the analogy of the well known kink solutions of the 
sine-Gordon equation. 

In connection with the soliton theory, it is interesting to find conservation laws, 
Backlund transformations, etc, of the SH equation and  these problems are now being 
pursued. 
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Appendix. Proof of (2.28) 

Let J k  be 
k - 1  

Jk = (-1)’Sk-,[(k-j)C,+l -p/+ll k = 1 , 2  , . . . ,  m. 
J = O  

We shall prove (2.28) by a mathematical induction. For k = 1 
J1 = - SO ( C I  - P I  ) = 0 

by (2.10b) and ( 2 . 1 5 ~ ) .  Assume (2.28) for k = 1, 2 , .  . . , n ( n  < m ) ,  i.e. 

Then 
J k  = o  k = 1 , 2  , . . . ,  n. 
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Substituting the relations 

cj+2= ( - l ) J + ' S j + I - r C , + l + ( - l ) J t l S j + Z  
r = O  

1 

pJ+2 = (- 1 )j+'sj+ 1 -rpr+ 1 + (- 1 ) '+'(j + 2) s j+z  
r = O  

which are derived from (2.19) and (2.10a), respectively, into (A4) yields 

The first term on the right-hand side of (A7) becomes 
n - 1  n-1 

C (-l)r+lsn-,sj+i-,[(n - j ) ~ ~ + i - ~ ~ + i l  
j = o  j=, 

= O  

because of (A3). On the other hand, the second term on the right-hand side of (A7) 
obviously vanishes. Thus we have 

J n + l = O  (A91 

which implies that (A3) holds for k = n + 1, completing the proof of (2.28). 
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